

Cummins Natural Gas Fuel Standards

Chad Fohne

Cummins On-Highway Natural Gas Fuel Standards

Table 14, Fuel Standards for Cummins® Natural Gas Engines						
Standard	Engine Family					
	B5.9 G, C8.3 G, B6.7 G	ISB5.9 G, B Gas International, B Gas Plus, C Gas Plus, L Gas Plus	ISL G, ISX12 G	B6.7N, L9N, ISX12N, X15N		
CES 14604 Minimum Methane Number: 80 Minimum Higher Heating Value: 975 BTU/Standard Cubic Feet	Yes	N/A	N/A	N/A		
CES 14624 Minimum Methane Number: 75 Minimum Lower Heating Value: 44194 kJ/kg [19,000 BTU/lbm]	N/A	N/A	Yes	Yes		
CES 14608 Minimum Methane Number: 65 Minimum Lower Heating Value: 37448.6 kJ/kg [16100 BTU/lbm]	N/A	Yes	N/A	N/A		

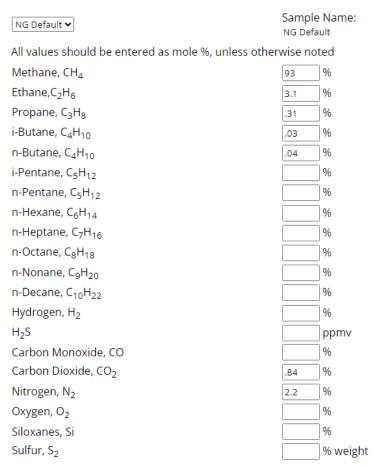

CES 14624 Max Impurity Limits

Table 2: Max Allowable Hydrogen, Hydrogen Sulfide, Sulfur, Siloxanes, & Halogens

Components	Requirements	Test Method	
Hydrogen (H ₂)	0.03% volume maximum	ASTM D2650	
Hydrogen Sulfide (H ₂ S)	0.0006% volume maximum	ASTM D4084	
Siloxanes	0.0003% volume maximum	EPA TO-14, 15 GC/ELCD, GC/AED, GC/MS	
Sulfur (S)	0.001% weight maximum	Title 17 CCR Section 94112 Method 16	
Halogens	0.000082% volume maximum	ASTM D7449	

CMI Fuel Quality Calculator

• FUEL QUALITY CALCULATOR

Sample Percentage: 99.52000000000001%

Methane Number: 86.7

Lower Heating Value: 20188 BTU/lbm

Fuel Quality Calculator is based on CES14624

• FUEL QUALITY CALCULATOR

NG Default ▼	Sample NG Defa	Name:
All values should be entered as mole %, unless other		
Methane, CH₄	69.23	%
Ethane, C ₂ H ₆	22.14	, %
Propane, C ₃ H ₈	6.89	, %
i-Butane, C ₄ H ₁₀	.67	%
n-Butane, C ₄ H ₁₀	.46	%
i-Pentane, C ₅ H ₁₂		%
n-Pentane, C ₅ H ₁₂		%
n-Hexane, C ₆ H ₁₄		%
n-Heptane, C ₇ H ₁₆		%
n-Octane, C ₈ H ₁₈		%
n-Nonane, C ₉ H ₂₀		%
n-Decane, C ₁₀ H ₂₂		%
Hydrogen, H ₂		%
H ₂ S		ppmv
Carbon Monoxide, CO		%
Carbon Dioxide, CO ₂		%
Nitrogen, N ₂	0.48	%
Oxygen, O ₂	.13	%
Siloxanes, Si		%
Sulfur, S ₂		% weight

Sample Percentage: 100%

Methane Number: 57.9

Lower Heating Value: 20722 BTU/lbm

https://www.cummins.com/engines/naturalgas/fuel-quality-calculator

Gas Quality, RNG, and Hydrogen Blends

TTP Industry Summit John Tiquet

WM's History with CNG

1995 - The first 14 CNG trucks launched in Palm Desert, CA.

1997 - 8 LNG trucks deployed in Lancaster, PA.

2000 - 120 LNG truck project in partnership with PGE in San Diego.

2001-2006 - 405 natural gas trucks deployed in SoCal South Coast Air district.

2007 - WM CEO David Steiner commits to increasing fuel efficiency and reducing emissions by 15% by the year 2020.

2009 - 122 natural gas trucks deployed in the City of Seattle, the largest single municipal refuse launch in US history. Trademarked "Clean N' Green".

2011 – 1,000 CNG trucks in operation, Formalization of the WM CNG Team, commitment to build \$250MM in Stations over the next 5 years.

2012 - Our 2020 efficiency and emission goal accomplished.

2017 - 100 stations completed and 6,000 NGV's in operation.

2020 – 10,000+ CNG trucks in operation and achieved our 2025 emissions goal.

WM's History with CNG

1995 - The first 14 CNG trucks launched in Palm Desert, CA.

1997 - 8 LNG trucks deployed in Lancaster, PA.

2000 - 120 LNG truck project in partnership with PGE in San Diego.

2001-2006 - 405 natural gas trucks deployed in SoCal South Coast Air district.

2007 - WM CEO David Steiner commits to increasing fuel efficiency and reducing emissions by 15% by the year 2020.

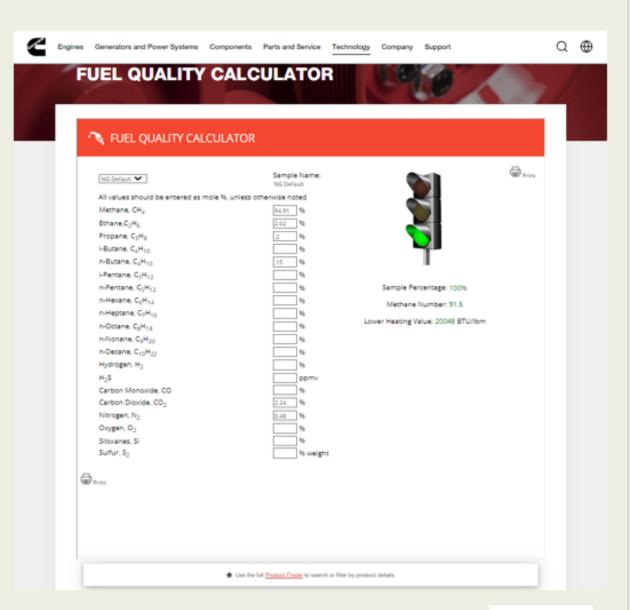
2009 - 122 natural gas trucks deployed in the City of Seattle, the largest single municipal refuse launch in US history. Trademarked "Clean N' Green".

2011 – 1,000 CNG trucks in operation, Formalization of the WM CNG Team, commitment to build \$250MM in Stations over the next 5 years.

2012 - Our 2020 efficiency and emission goal accomplished.

2017 - 100 stations completed and 6,000 NGV's in operation.

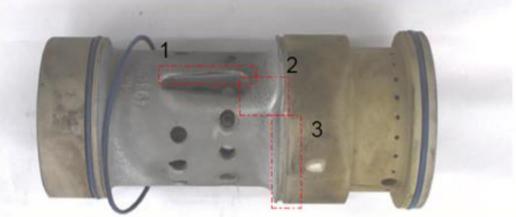
2020 – 10,000+ CNG trucks in operation and achieved our 2025 emissions goal.



Gas Quality

Gas quality varies by <u>region</u> and season.

- Obtain gas analysis and history from utility/source before building CNG fueling infrastructure or purchasing fleet equipment for a site.
- Verify compatibility of gas with <u>Cummins Fuel Quality Calculator</u>.
- Other Hydrocarbons in pipeline gas affect Methane Number and Lower Heating Value.


Effects on Engines

- Some trace compositions in the fuel can cause engine component failures.
- Cummins has stringent limitations on Hydrogen (H2) in their fuel specification, allowing a <u>maximum of 0.03%</u> by volume.
- At one location, Chlorine (CI), Fluorine (F), which are Halogens, along with Sulfur (S), has been found on failed fuel mixers.

 Cummins is updating CES 14624, which will now list requirements for Halogens.

Table 2: Maximum Allowable Hydrogen, Hydrogen Sulfide, Sulfur, Siloxanes, and Halogens.

Components	Requirements	Test Method ASTM D2650		
Hydrogen (H ₂)	0.03% volume maximum			
Hydrogen Sulfide (H ₂ S)	0.0006% volume maximum	ASTM D4084		
Siloxanes	0.0003% volume maximum	EPA TO-14, 15 GC/ELCD, GC/AED, GC/MS		
Sulfur (S)	0.001% weight maximum	Title 17 CCR Section 94112 Method 16		
Halogens	0.000082% volume maximum	ASTM D7449		

Southern California Gas Company overview

TTP Summit June 2024

Proud History of Delivering Energy to Southern California

of institutional knowledge and expertise

Our Mission is to Build the Cleanest, Safest, and Most Innovative Energy Infrastructure Company in America.

Service territory covers about

24,000 SQUARE MILES

of diverse terrain throughout Central and Southern California, from Visalia to the Mexican border

Largest natural gas distribution utility in country¹, powering Southern California with increasingly clean, safe and reliable energy delivered to more than

21+ MILLION
CUSTOMERS

¹ based on number of customers and revenue

Interconnector Gas quality

	Maximu	Table ım Constitue	1 ent Concentra	tions		
Renewal	ole Gas Injection Constituents			Testing fo	r Gas Sou	rce
	Trigger Level	Lower Action Level	Upper Action Level	Non- Hazardous Landfill	Dairies	O t h e r
Base Gas Quality Sp	oecifications ¹			X	X	X
Health Protective Co	onstituents (HP	C) - Non-Cai	rcinogenic ²			
Antimony	0.60 mg/m ³ 0.12 ppmv	6.0 mg/m ³ 1.2 ppmv	30 mg/m ³ 6.1 ppmv	X		
Copper	0.060 mg/m ³ 0.02 ppmv	0.60 mg/m ³ 0.23 ppmv	3.0 mg/m ³ 1.2 ppmv	X		
Hydrogen Sulfide ⁶	30 mg/m ³ 22 ppmv	$ \begin{array}{c} 300 \\ mg/m^3 \\ 216 ppmv \end{array} $	1500 mg/m ³ 1080 ppmv	X	X	X
Lead	0.075 mg/m ³ 0.009 ppmv	$0.75 \text{ mg/m}^3 $ 0.09 ppmv	3.8 mg/m ³ 0.44 ppmv	X		
Mercaptans (Alkyl Thiols) ⁶	12 ppmv	120 ppmv	610 ppmv	X	X	X
Methacrolein	1.1 mg/m ³ 0.37 ppmv	11 mg/m ³ 3.7 ppmv	53 mg/m ³ 18 ppmv	X		
Toluene	904 mg/m ³ 240 ppmv	9000 mg/m ³ 2400 ppmv	45000 mg/m ³ 12000 ppmv	X	X	X

The Transport Project Industry Summit

Tim Tiger Emerging Technology and Innovation Southwest Gas Corporation

Recognition

95% Customer Satisfaction the last seven years

#1 in Customer Satisfaction with Business & Large Residential Natural Gas Utilities in the West, for the fourth year in a row, 2020-2023 by J.D. Power

Emerging Technology and Innovation Department

- Energy Efficiency/Codes & Standards
- Renewable Natural Gas
- Compressed Natural Gas
- Hydrogen
- Technology Readiness Level
 - Equipment and System Evaluation

Studying natural gas-hydrogen blends to ensure safety, performance, system integrity, and reliability.

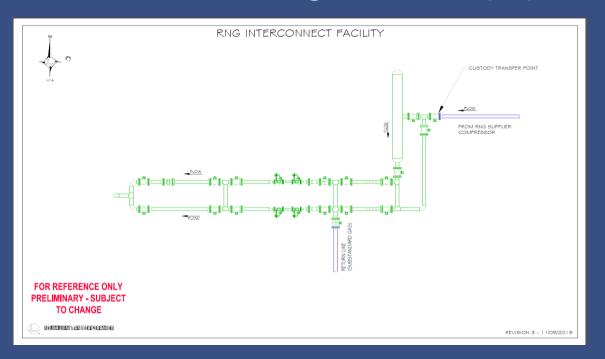
- Delivers sustainable energy which promotes a diversified economy, contributes to workforce development and environmental and economic justice efforts, and supports community prosperity and growth
- Center for an Arizona Carbon-Neutral Economy (AzCaNE) SHINE
- Renewable Natural Gas
- Develop an understanding of legislation, global direction, innovation, and technology readiness levels related to hydrogen so Southwest Gas may develop timely regulatory approved services for customers that wish to benefit from the hydrogen economy.

RNG Activities

Cleaning

Interconnection

Interstate Pipeline Southwest Gas Pipeline


RNG Interconnections (Approved)

- Pima County (WWTP AZ)
- Sunoma RNG (Dairy AZ)
- Victor Valley (WWTP CA)
- Butterfield RNG1 (Dairy AZ)
- Maricopa RNG1 (Dairy AZ)


Interconnection – Gas Quality (O&M Agreement)

- Company RNG gas quality policy
- Gas sampling/Lab Testing standards and protocols
- Operating agreement
- Standard design and equipment specifications

- BTU/Wobbe Number
- Sulfur Content/H₂S
- Inerts (O_2, N_2, CO_2)
- Dew point/Water Content
- Bacteria/pathogens/cause harm
- Hazardous substances
- Siloxanes

